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Abstract. In this paper, we continue our study of the square element graph which is

defined as follows: if R is a ring then the square element graph Sq(R) is the simple

undirected graph whose vertex set consists of all non-zero elements of R, and two

vertices u, v are adjacent if and only if u + v = x2 for some x ∈ R − {0}. Here we

mainly consider the connectedness of Sq(R) over different rings. We particularly look

at Sq(R) taken over some infinite rings which contain Z as a subring. For a ring R

and an ideal I of R, the relation between the connectedness of Sq(R) and Sq(R/I)

is studied. Finally, connectedness of Sq(R) over various polynomial rings and matrix

rings are considered.
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1. Introduction

In the last few decades, several graphs have been defined over algebraic struc-
tures (for example, see [1]–[14]). Among these, the square element graph seems
to be the first instance where the set of square elements of a ring is directly
associated with a graph. Sen Gupta and Sen [11] first introduced the square
element graph over a finite commutative ring and studied the interplay between
its graph-theoretic properties and the algebraic properties. After that, in [12],
they generalized the square element graph by defining it over any ring. The
square element graph is defined in the following way:

Definition 1.1. [12] Let R be a ring. The Square element graph over R is the
simple undirected graph G = (V,E), where V = R− {0} and ab ∈ E if and only
if a 6= b and a+ b = x2 for some x ∈ R− {0}. We denote this graph by Sq(R).

Sen Gupta and Sen studied several properties of Sq(R) in [12]. In particular,
they considered Sq(R) defined over some important infinite rings. In this paper,
we continue the study of Sq(R). We give some significant results regarding
the connectedness of Sq(R) for some infinite rings (in particular, infinite fields,
polynomial rings and matrix rings), and in this process we provide some shorter
and alternative proofs of some results given in the paper [12]. We also consider
the relation between the connectedness of the square element graph taken over
any ring R and that taken over any of its quotient rings.

Throughout this paper, Char(R) denotes the characteristic of a ring R. Also
a ↔ b denotes that the vertices a and b are adjacent. N(v) denotes the set of
vertices adjacent with the vertex v. For other graph-theoretic terminologies, we
refer to [14].

2. Connectedness of Sq(R) over Infinite Rings

In this section, we consider the connectedness of the graph Sq(R) defined over
different infinite rings R.

In [12], Sen Gupta and Sen proved that Sq(Z) is connected. Here we give
an alternative proof of the same using the well-known Lagrange’s four-square
theorem.

Theorem 2.1. Sq(Z) is connected.

Proof. We show that for any vertex v (6= −1), there is a path between v and
−1 in Sq(Z). Since v is an integer, by Lagrange’s four-square theorem it follows
that |v| is a sum of four integer squares. First, let v > 0 (note that v 6= 0).
Then v = x2 + y2 + u2 + t2 for some integers x, y, u, t. Since v 6= 0, at least
one of x, y, u, t is non-zero. Suppose v is a square integer itself. Then we can
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take y = u = t = 0 and v = x2. In that case we have a walk v ↔ 8x2 ↔
−4x2 ↔ 5x2 ↔ 4x2 ↔ −4x + 1 ↔ 4x ↔ 1 + 4x2 ↔ −1 between v and −1. If
v is not a square integer, then it follows that at least two of x, y, u, t are non-
zero. Without loss of generality, let x, y 6= 0. If v = x2 + y2, then we have
a walk v ↔ 3x2 − y2 ↔ 6x2 + y2 ↔ −6x2 ↔ 9x2 ↔ 7x2 ↔ −3x2 ↔ 4x2 ↔
−4x + 1 ↔ 4x ↔ 1 + 4x2 ↔ −1. Again, if x, y, t 6= 0, then we have a walk
v ↔ −x2 − u2 − t2 ↔ 2x2 + u2 + t2 ↔ −2x2 − u2 ↔ 3x2 + u2 ↔ −3x2 ↔ 4x2 ↔
−4x + 1 ↔ 4x ↔ 1 + 4x2 ↔ −1. So for any v > 0, there exists a walk (and
hence, a path) between v and −1 in Sq(Z). Again, let v < −1. Then 1 − v is
a positive integer. As we have just shown, there exists a path (say, P ) between
1 − v and −1 in Sq(Z). Thus we have a walk v ↔ 1 − v ↔ P ↔ −1 between v
and −1. This shows that Sq(Z) is connected.

Next, we consider the connectedness of Sq(F ) for a field of characteristic 0.

Theorem 2.2. Let F be a field with Char(F ) = 0. Then Sq(F ) is connected with
diam(Sq(F )) ≤ 7.

Proof. We show that for any a ∈ F − {0,−1}, there exists a path between a
and −1 in Sq(F ). Let a ∈ F − {0,−2} and 4−1a2 6= −1. Then we have a path
a ↔ 4−1a2 + 1 ↔ −1. Thus there exists a path of length at most 2 between a
and −1 for any a ∈ F − {0,−2} with 4−1a2 6= −1. Now considering the vertex
−2, we have a path −2 ↔ 3 ↔ 4−1(32) + 1 ↔ −1. Finally, if 4−1a2 = −1, then
we have a path a ↔ a2 + 4−1 ↔ −4−1 ↔ 4−1((4−1)2) + 1 ↔ −1. Hence all the
vertices are in the component to which the vertex −1 belongs. This shows that
Sq(F ) is connected. Now let a, b be any two vertices distinct from −1. If a = −b
and a2 = −4, then we have a path b ↔ a2 + 4−1 ↔ a. Let a 6= −b and (without
loss of generality) a2 6= −4. Then from the paths considered before, we see that
there is a path of length at most 4 from a to −1 and a path of length at most 3
from b to −1. Thus we have a path of length at most 7 between any two vertices
of Sq(F ). Hence diam(Sq(F )) ≤ 7.

Corollary 2.3. Sq(Q) is connected and diam(Sq(Q)) ≤ 7.

Remark 2.4. Note that in [12], Sen Gupta and Sen had used the connectedness
of Sq(Z) to prove the connectedness of Sq(Q). But Theorem 2.2 gives us an
independent (and shorter) proof of connectedness of Sq(Q). Moreover, it gives
us a bound for the diameter of Sq(Q).

By Theorem 2.2, it follows that Sq(R) is connected. In fact, we can show
that diam(Sq(R)) = 2.

Theorem 2.5. Sq(R) is connected with diameter 2.

Proof. It is known that for any x ∈ R+, there exists some y ∈ R+ such that
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x = y2. Consider two vertices u, v in Sq(R). If u, v > 0, then u ↔ v. If u > 0
and v < 0 (without loss of generality), then we have a path u ↔ |v| + 1 ↔ v.
Finally, if u, v < 0, then we have a path u ↔ |uv| + 1 ↔ v. Hence we have a
path of length at most 2 between any two vertices of Sq(R). Also, Sq(R) is not
complete since −2 6↔ 1. Hence Sq(R) is connected with diameter 2.

The field C is algebraically closed and hence every non-zero element of C
is a square element of C. Noting that 0 is not a square element, this leads
immediately to the following result.

Theorem 2.6. Sq(C) is connected with diameter 2. In fact, Sq(C) is a disjoint
union of infinitely many copies of K2.

Remark 2.7. Note that we can readily see Sq(R) 6∼= Sq(C), as every vertex in the
complement of Sq(C) has degree 1, whereas every vertex in the complement of
Sq(R) is of infinite degree.

It is a well-known fact that every finite connected graph has a spanning tree.
The same is not necessarily true for an infinite graph. We show in our next
result that if F is a field such that |F | is countably infinite, then Sq(F ) has a
spanning tree.

Proposition 2.8. Let F be field such that |F | = ℵ0. Then Sq(F ) has a rooted
spanning tree T . Also, the root of T is of infinite degree, while the other vertices
of T have degree 1, 2, 3 or 4.

Proof. Clearly, Char(F ) = 0 and hence Q ⊆ F . Consider the vertex −1. Let
T0 be the subgraph induced by the edges joining u and −1 for all neighbors u of
−1. Let F − ({0,−2}∪N(−1)) be enumerated as {bn | n ∈ N}. We have a path
bn ↔ 4−1b2n + 1 ↔ −1 for each n ∈ N. So 4−1b2n + 1 is one of the neighbors of
−1. For each n ∈ N, let Tn be the subgraph induced by T0 and the edge joining
bn and 4−1b2n + 1. Then T ′ =

⋃

n∈N
Tn contains all the vertices of Sq(F ) except

−2. Let T = T ′ ∪ {e}, where e is the edge joining −2 and 3. Clearly, T is a tree
(rooted at −1) which contains all vertices of Sq(F ), i.e., T is a rooted spanning
tree. The vertex −1 has infinitely many neighbors and each neighbor (6= 3) has
degree 2 or 3 (as each neighbor of −1 can be of the form 4−1b2n + 1 for at most
two values of n, keeping in mind that b2n = (−bn)

2). If 3 is a neighbor of −1,
then deg(3) = 4 if 8 is a square element. In this regard it is easy to see that for
any vertex v(6= −1) we have a path of length at most 3 between −1 and v in T .
So we have found a rooted spanning tree where the root is of infinite degree and
the other vertices are of degree 1, 2, 3 or 4.

Next, we consider the rings Z[
√
d] where d is not a perfect square.

Proposition 2.9. Let d ∈ N − {m2 | m ∈ N}. Then Sq(Z[
√
d]) is not connected
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and it has exactly two components.

Proof. Let A = {a + 2k
√
d | a, k ∈ Z}. Clearly, Z ⊂ A. Now for a 6= −1,

we have a path a + 2k
√
d ↔ k2d − 2k

√
d − a ↔ 1 + a. Again, we have a path

−1+2k
√
d ↔ d−2k

√
d+1 ↔ k2−1+4k

√
d ↔ 4d+1. So for each vertex v in A,

there is path from v to some integer. The connectedness of Sq(Z) then implies
that the vertices belonging to the set A are in the same component in Sq(Z[

√
d]).

Again, let B = {a+(2k+1)
√
d | a, k ∈ Z}. If a = 4m+2 for somem ∈ Z, then we

have a path a+
√
d ↔ 4m2−1−

√
d ↔ 1+

√
d. We note that for any a+(2k+1)

√
d,

there exists a path a+(2k+1)
√
d ↔ k2d−

√
d+1−a↔ a−1+

√
d ↔ 2−a−

√
d ↔

2 + a+
√
d ↔ 7− a−

√
d ↔ −3 + a+

√
d ↔ 4− a−

√
d ↔ a+

√
d. Now one of

a+
√
d, a− 1+

√
d, a− 3+

√
d and a+2+

√
d must be of the form 4m+2+

√
d.

This shows that we have a path from a+(2k+1)
√
d to 1+

√
d. Thus the vertices

of B are in a single component of Sq(Z[
√
d]). Finally, we show that there is no

path between the vertices 1+2
√
d and 1+3

√
d (clearly, they are not adjacent). If

possible, let 1+2
√
d ↔ c1 ↔ c2 ↔ · · · ↔ ck ↔ 1+3

√
d be a path between 1+2

√
d

and 1 + 3
√
d. So we must have 1+ 2

√
d+ c1 = h2

1, c1 + c2 = h2
2, . . . , ck−1 + ck =

h2
k, ck + 1 + 3

√
d = h2

k+1 for some h1, h2, . . . , hk ∈ Z[
√
d] − {0}. This implies

that (1 + 2
√
d) + (−1)k+1(1 + 3

√
d) = h2

1 − h2
2 + · · · + (−1)k+1h2

k+1. Here the

coefficient of
√
d in the left hand side is odd whereas in the right hand side, it is

even. Thus, the vertices 1+2
√
d and 1+3

√
d are in different components. Hence

Sq(Z[
√
d]) is not connected and it has exactly two components (corresponding

to vertices belonging to A and B respectively).

The analogous result for Z[
√
−d] (where d is not a perfect square) also holds.

Proposition 2.10. Let d ∈ N−{m2 | m ∈ N}. Then Sq(Z[
√
−d]) is not connected

and it has exactly two components.

Interestingly, the same result is true for Z[i] as well, as shown next.

Proposition 2.11. Sq(Z[i]) is not connected and it has exactly 2 components.

Proof. It is easy to see that if Sq(Z[i]) is connected, then we must have some
a1, a2, k,m ∈ Z such that a1 + 2ki and a2 + (2m+ 1)i are adjacent in Sq(Z[i]).
In that case, a1 + a2 + (2k + 2m + 1)i = (c + di)2 for some c, d ∈ Z. This
implies that 2k + 2m + 1 = 2cd (equating the coefficients of i in both sides),
which is a contradiction as the left hand side is an odd integer whereas the
right hand side gives an even integer. So Sq(Z[i]) is not connected. Proceeding
similarly to what we did in Proposition 2.9, one can show that Sq(Z[i]) has
exactly two components corresponding to the sets of vertices {a+2ki | a, k ∈ Z}
and {a+ (2k + 1)i | a, k ∈ Z}, respectively.

Remark 2.12. We have seen in [12] that there might exist a chain of subrings
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R1 ⊂ R2 ⊂ R3 such that Sq(R1) and Sq(R3) are connected, but Sq(R2) is not
connected. For example, Z ⊂ Z[x] ⊂ Q(Z[x]) and we have that Sq(Z) and
Sq(Q(Z[x])) are both connected whereas Sq(Z[x]) is not. Now we know that
Z ⊂ Z[

√
d] ⊂ R as subrings (where d is any non-square natural number). We

have shown that Sq(Z) and Sq(R) are connected (cf. Theorems 2.1 and 2.5),
but Sq(Z[

√
d]) is not connected (cf. Proposition 2.9). Again, Z ⊂ Z[i] ⊂ C as

subrings. We have shown that Sq(Z) and Sq(C) are connected (cf. Theorem 2.6),
whereas Sq(Z[i]) is not connected (cf. Proposition 2.11). Thus we have found
two more examples showing that we might have chain of subrings R1 ⊂ R2 ⊂ R3

such that Sq(R1) and Sq(R3) are connected but Sq(R2) is not connected.

Interestingly, the technique used in Theorem 2.2 can be used to prove the
connectedness of Sq(R) for some rings R with Char(R) = 0 which are not fields.
The following is one such instance.

Theorem 2.13. Sq(C[0, 1]) is connected with diameter at most 7.

Proof. For a function f ∈ C[0, 1] and any t ∈ N, let 1
t
f denote the function g,

where g(x) = 1
t
f(x). Clearly, 1

t
f ∈ C[0, 1] for all t ∈ N and f ∈ C[0, 1]. For

every r ∈ R, let fr denote the function given by fr(x) = r for all x ∈ [0, 1].
Clearly, f0 is the zero-element of C[0, 1], and f−r = −fr for all r ∈ R. Now
proceeding exactly in the same way as we did in Theorem 2.2, we can show that
for every f ∈ C[0, 1]−{f0, f−1}, there is a path between f and f−1 in Sq(C[0, 1]).
Thus Sq(C[0, 1]) is connected and arguing similarly as in Theorem 2.2, we see
that diam(Sq(C[0, 1])) ≤ 7.

It is interesting to consider the connectedness of the square element graph
over a ring in relation with the connectedness of the square element graphs taken
over its quotient rings. We have seen that Sq(Z) is connected. We shall shortly
show that there are ideals I of Z for which Sq(Z/I) is not connected. Before
that, we have the following result.

Theorem 2.14. Sq(kZ) is not connected for any natural number k > 1.

Proof. We show that there is no path between the vertices k and −k2 in Sq(kZ).
As −k2+ k < 0, k 6↔ −k2. If possible, let there be a path k ↔ c1 ↔ c2 ↔ · · · ↔
cm ↔ −k2. This implies that k+ c1 = (kh1)

2, c1+ c2 = (kh2)
2, . . . , cm−1+ cm =

(khm)2, cm + (−k2) = (khm+1)
2 for some h1, h2, . . . , hm+1 ∈ Z − {0}. Now

k + (−1)m+1(−k2) = k + c1 − (c1 + c2) + (c2 + c3)− . . .+ (−1)m+1(cm − k2) =
(kh1)

2− (kh2)
2+ . . .+(−1)m+1(khm+1)

2. Here the right hand side is a multiple
of k2 but the left hand side is not, which is a contradiction. Thus there is no
path between k and −k2. So Sq(kZ) is not connected.

Remark 2.15. (i) We note that Sq(Z10) is connected (cf. [11]). Consider the ideal
I = {0̄, 5̄} of Z10. The graph Sq(I) is also connected. However, Sq(Z10/I)(∼=
Sq(Z5)) is not connected (cf. [12]). This shows that for a ring R and an ideal
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I of R, connectedness of Sq(R) and Sq(I) does not imply the connectedness of
Sq(R/I).

(ii) We have shown that Sq(Z) is connected. Considering the ideal I = 6Z,
we note that the graph Sq(Z/I)(∼= Sq(Z6)) is connected. But as we know from
Theorem 2.14, the graph Sq(6Z) is not connected. So connectedness of Sq(R)
and Sq(R/I) does not imply the connectedness of Sq(I).

The above remark leads us naturally to the question if the connectedness of
Sq(I) and Sq(R/I) implies the connectedness of Sq(R). As we show in the next
theorem, it does hold true when R is commutative and unital.

Theorem 2.16. Let R be a commutative ring with 1 and let I be an ideal of R.
If Sq(I) and Sq(R/I) are connected, then Sq(R) is connected.

Proof. Let a ∈ R−I. We look for a path from the vertex a to ik for some ik ∈ I.
If a + I = b2 + I for some b ∈ R, then a + ik = b2 for some ik ∈ I and hence
a ↔ ik. If there is no b ∈ I for which a+ I = b2 + I, then the connectedness of
Sq(R/I) implies that there is a path between a+I and 1+I (note that a 6= 1, as
1+ I = 12+ I). Let that path be a+ I ↔ c1+ I ↔ · · · ↔ ck + I ↔ b2+ I. Then
a+ c1+ I = h2

1+ I, c2+ c1+ I = h2
2+ I, . . . , ck−1+ ck + I = h2

k + I, ck + b2+ I =
h2
k+1+ I for some h1, h2, . . . , hk ∈ R. So we find that a+(c1− i1) = h2

1, c1− i1+
(c2− i2) = h2

2, . . . , ck− ik+(b2− ik+1) = h2
k+1 for some i1, i2, . . . , ik+1 ∈ I. Thus

we have a path a ↔ c1 − i1 ↔ c2 − i2 ↔ · · · ↔ ck − ik ↔ b2 − ik+1 ↔ ik+1. So
there is always a path from a to a vertex belonging to I. Now as the vertices in
I are in the same component (since Sq(I) is connected), this implies that Sq(R)
is connected.

3. Sq(R) over Polynomial Rings and Matrix Rings

In this section we consider the square element graph over some special polynomial
rings and matrix rings.

We have seen in [12] that for a field F with Char(F ) = 2, Sq(F ) is complete if
F is finite; and Sq(F ) is either complete or disconnected if F is infinite. However,
when we consider the polynomial ring F [x] over any field F of characteristic 2,
the graph Sq(F [x]) is disconnected, as we show next.

Proposition 3.1. Let F be a field with Char(F ) = 2. Then Sq(F [x]) is discon-
nected.

Proof. An element a0 + a1x
r1 + a2x

r2 + · · · + atx
rt (where t ∈ N) is a square

element in F [x] if and only if the ri’s are even for all i = 1, 2, . . . , t. This
shows that a sum of a square and a non-square cannot be square. Now for
connectedness of Sq(F [x]), it is necessary to have at least one edge between a
square vertex and a non-square vertex. Hence Sq(F [x]) is not connected.
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Note that as a corollary of the above result, it follows that Sq(Z2[x]) is dis-
connected, an alternative proof of which was given by Sen Gupta and Sen in
[12]. Now when we move to a field F with characteristic not equal to 2, Sq(F [x])
is connected.

Proposition 3.2. If F is a field with Char(F ) 6= 2, then Sq(F [x]) is connected.

Proof. First, let Char(F ) = p for some odd prime p. If f ∈ F [x] − {−1}, then
(1 + p+1

2 f)2 = f + 1 + (p+1)2

4 f2. Now 1 + p+1
2 f = 0 implies that f = −2, and

1+ (p+1)2

4 f2 = 0 implies that f2 = −4. Let f ∈ F [x]−{0} be such that f 6= −2

and f2 6= −4. Then we have a path f ↔ 1 + (p+1)2

4 f2 ↔ −1. Again, if g = −2

or g2 = −4, then we have a path g ↔ −g + x2 ↔ 1 + (p+1)2

4 (−g + x2)2 ↔ −1.
So for every f ∈ F [x] − {1}, there is a path between f and −1 in Sq(F [x]).
Consequently, Sq(F [x]) is connected. Next, let Char(F ) = 0. Let f ∈ F [x] −
{0,−1,−2}. Then we have a path f ↔ 1 + f2

4 ↔ −1. Again, if g = −2, we
have a path g ↔ 3 ↔ 1+ 9

4 ↔ −1. Thus every vertex of Sq(F [x]) is in the same
component with −1. So Sq(F [x]) is connected.

Combining the above two results, we have the following result:

Theorem 3.3. For a field F , Sq(F [x]) is connected if and only if Char(F ) 6= 2.

Next, we show that Sq(F [x]) always contains a 3-cycle.

Theorem 3.4. girth(Sq(F [x]) = 3 for any field F .

Proof. If Char(F ) = 0, then −1 ↔ 1 + 4−1x2 ↔ 1 + 4−1(1 + 4−1x2)2 ↔ −1
is a 3-cycle. Next, let Char(F ) = 2. Then x2 ↔ x4 ↔ x6 ↔ x2 is a 3-
cycle. Finally, if Char(F ) = p (where p is an odd prime), then we have a
3-cycle −1 ↔ 1 + (2−1(p + 1))2x2 ↔ 1 + (1 + (2−1(p + 1))2x2)2 ↔ −1. Hence
girth(Sq(F [x]) = 3.

Now we consider Sq(R) over matrix rings. In [12], Sen Gupta and Sen had
shown that Sq(M2(Z2)) is connected. We now show that Sq(Mn(F )) is in fact
connected for any finite field F with characteristic 2. For this, we first have the
following lemma.

Lemma 3.5. If F is a finite field with Char(F ) = 2, then every non-square
element of Mn(F ) (where n > 1) can be expressed as a sum of squares.

Proof. As F is a finite field with Char(F ) = 2, we find that |F | = 2r (for
some r ∈ N). If (F − {0}, ·) =< a >, then a2r−1 = 1. This shows that every
non-zero element of F can be expressed as an even power of a. Consequently,
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each non-zero element of F is a square element. We now use the principle of
Mathematical Induction to show that every non-square element of Mn(F ) can
be expressed as a sum of squares. First, let n = 2. Due to the above reasoning,

any matrix in Mn(F ) can be expressed as

[

x2 y2

z2 t2

]

, which can again be expressed

as

[

x 0
0 0

]2

+

[

0 0
0 t

]2

+

[

0 y
0 y

]2

+

[

0 0
0 y

]2

+

[

0 0
z z

]2

+

[

0 0
0 z

]2

. So the hypothesis is

true for n = 2. Now let the hypothesis be true for n = m for some m > 2.
Consider a non-square matrix A in Mm+1(F ). Then we have

A =













a211 a212 · · · a21m a21m+1

a221 a222 · · · a22m a22m+1

· · · · · · · · · · · ·
a2m1 a2m2 · · · a2mm a2mm+1

a2m+11 a2m+12 · · · a2m+1m a2m+1m+1













(where aij ∈ F )

=















a211 a212 · · · a21m 0
a221 a222 · · · a22m 0
...

. . .
... ∗

...
a2m1 a2m2 · · · a2mm 0
0 0 · · · 0 0















+













0 0 · · · 0 a21m+1

0 0 · · · 0 a22m+1

· · · · · · · · · · · ·
0 0 · · · 0 a2mm+1

a2m+11 a2m+12 · · · a2m+1m a2m+1m+1













= I + J

Now let H =









a211 a212 a213 . . . a21m
a221 a222 a223 . . . a22m
. . . . . . . . . . . . . . . . . . . . . .
a2m1 a2m2 a2m3 . . . a2mm









. Then from the induction hypothesis

H = H2
1 +H2

2 + . . .+H2
k where k ≥ 1, and Hi ∈ Mm(F ).

So I =

[

H Om1

O1m O11

]

=

[

H2
1 +H2

2 + ....+H2
k Om1

O1m O11

]

= T 2
1 + T 2

2 + · · · + T 2
k ,

where Ti =

[

Hi Om1

O1m O11

]

for i = 1, 2, . . . , k.

On the other hand, we find that

J =













0 0 · · · 0 a21m+1

0 0 · · · 0 a22m+1

· · · · · · · · · · · ·
0 0 · · · 0 a2mm+1

a2m+11 a2m+12 · · · a2m+1m a2m+1m+1













=













0 0 · · · 0 a21m+1

0 0 · · · 0 a22m+1

· · · · · · · · · · · ·
0 0 · · · 0 a2mm+1

0 0 · · · 0 a2m+1,m+1













+













0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · ·
0 0 · · · 0 0

a2m+11 a2m+12 · · · a2m+1m 0
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=













0 · · · 0 a21m+1

0 · · · 0 a22m+1

· · · · · · · · ·
0 · · · 0 a2mm+1

0 · · · 0 1













2

+













0 · · · 0 0
0 · · · 0 0
· · · · · · · · ·
0 · · · 0 0

a2m+11 · · · a2m+1m 1













2

+













0 · · · 0 0
0 · · · 0 0
· · · · · · · · ·
0 · · · 0 0
0 · · · 0 am+1m+1













2

= S2
1 + S2

2 .

So A = I + J = T 2
1 + T 2

2 + · · · + T 2
k + S2

1 + S2
2 + S2

3 . This shows that the
hypothesis is true for n = m+1 as well. Hence the result holds by the principle
of Mathematical Induction.

Theorem 3.6. Let F be a finite field with Char(F ) = 2. Then Sq(Mn(F )) is
connected.

Proof. We show that for any non-zero matrix A ∈ Mn(F ), there is a path
between A and In. If A = B2 for some non-zero B ∈ Mn(F ), then A ↔ In since
A+In = B2+In = (B+In)

2. So every square vertex is adjacent to In. Again, if A
is not a square element inMn(F ), then A can be expressed as S2

1+S2
2+. . .+S2

k (by
Lemma 3.5), where Si ∈ Mn(F ) for i = 1, 2, . . . , k. Then we have a path between
A and In given by A ↔ S2

2+S2
3+. . .+S2

k ↔ S2
3+S2

4+. . .+S2
k ↔ · · · ↔ S2

k ↔ In.
Thus Sq(Mn(F )) is connected.

In fact, Sq(Mn(F )) is connected for any field F with odd characteristic also.

Theorem 3.7. Let p be an odd prime and n ∈ N − {1}. If F is a field with
Char(F ) = p, then Sq(Mn(F )) is connected.

Proof. Let I be the identity and 0n be the zero-element ofMn(F ). We show that
there exists a path from −(2−1(p+ 1))2I to any other vertex A of Sq(Mn(F )).

Case 1: Let (2−1(p + 1))2I + A2, (2−1(p + 1))I + A 6= 0n. Then we have a
path A ↔ A2 + (2−1(p+ 1))2I ↔ −(2−1(p+ 1))2I.

Case 2: Let (2−1(p + 1))2I + A2 = 0n and (2−1(p + 1))I + A 6= 0n. If
(I − A)2 + (2−1(p + 1))2I = 0n = (2−1(p + 1))2I + A2, then we have that
A = 2−1I, which is a contradiction since (2−1I)2 + (2−1(p + 1))I 6= 0n. Again
if (I −A) + (2−1(p+ 1))I = 0n, then we have that A = (2−1(p+ 3))I, which is
again a contradiction since ((2−1(p+3))I)2 +(2−1(p+1))2I 6= 0n. Also, I 6= A.
So we have a path A ↔ I −A ↔ (I −A)2 + (2−1(p+ 1))2I ↔ −(2−1(p+ 1))2I.

Case 3: Let (2−1(p+1))2I +A2 6= 0n and (2−1(p+1))I +A = 0n (note that
both cannot be zero together). Then A = −(2−1(p + 1))I. So we have a path
−(2−1(p+ 1))I ↔ I + (2−1(p+ 1))I ↔ (I + (2−1(p+ 1))I)2 + (2−1(p+ 1))2I ↔
−(2−1(p+ 1))2I.

So there is path from −2−1(p + 1)I to all vertices of Sq(Mn(F )), and thus
Sq(Mn(F )) is connected.
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From Theorems 3.6 and 3.7, we have the following result:

Corollary 3.8. Sq(Mn(F )) is connected for any finite field F , where n > 1.

Finally, we show that Sq(Mn(F )) is connected for any field F with charac-
teristic 0 as well.

Theorem 3.9. If F is a field with Char(F ) = 0, then Sq(Mn(F )) is connected
for any n ∈ N− {1}.

Proof. Let I be the identity and 0n be the zero-element of Mn(F ). Now we show
that all vertices are in the same component with the vertex−4−1I in Sq(Mn(F )).

Case 1: If 4−1I + A2 6= 0n and 2−1I + A 6= 0, then we have a path A ↔
A2 + 4−1I ↔ −4−1I.

Case 2: Let 4−1I + A2 = 0 and 2−1I + A 6= 0. If (I − A)2 + 4−1I =
0 = 4−1I + A2, then we have that A = 2−1I which is a contradiction since
(2−1I)2 + 4−1I 6= 0. Again, if (I − A) + 2−1I = 0 then this implies that
A = 2−13I, which is again a contradiction since (2−13I)2 + 4−1I 6= 0. So we do
have a path A ↔ I −A ↔ (I −A)2 + 4−1I ↔ −4−1I.

Case 3: Let 4−1I+A2 6= 0 and 2−1I+A = 0 (note that both cannot be zero
together). Then A = −2−1I. In this case we have a path −2−1I ↔ 4−13I ↔
4−1I + (4−13I)2 ↔ −4−1I.

The above three cases show that from any vertex we can always have a path
to the vertex −4−1I in Sq(Mn(F )). So Sq(Mn(F )) is connected.

Combining Theorems 3.7 and 3.9, we obtain the following result:

Proposition 3.10. If n ∈ N − {1} and F is a field with Char(F ) 6= 2, then
Sq(Mn(F )) is connected.

We conclude the paper with the following question:

Problem 3.11. Characterize the class of rings R for which Sq(Mn(R)) is con-
nected.
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